

Emissions Control for Lean Gasoline Engines

Vitaly Y. Prikhodko (PI)

Email: prikhodkovy@ornl.gov

Phone: 865-341-1459

Oak Ridge National Laboratory

National Transportation Research Center

2019 DOE Vehicle Technologies Office Annual Merit Review

June 12, 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ace033

Acknowledgments

- Funding & guidance from DOE VTO Program Managers:
 - Ken Howden, Gurpreet Singh, Mike Weismiller

- Contributions from the ORNL Team:
 - Todd Toops, Josh Pihl, Jim Parks

- Collaboration with University of South Carolina:
 - Calvin Thomas, Dr. Jochen Lauterbach

- Collaboration with partners at GM:
 - Wei Li, Lei Wang, Pat Szymkowicz, Paul Najt, Arun Solomon

- Collaboration with partners at Umicore:
 - Tom Pauly, Ken Price, David Moser, Sanket Nipunage

Project Overview

Timeline

- Year 1 of 3-year program
 Project start date: FY2019
 Project end date: FY2021
- Builds on previous R&D in FY16-FY18

<u>Budget</u>

FY19: \$500k (Task 3*)

*Task 3: Dilute Lean Gasoline Emissions Control

Part of large ORNL project "Controlling Emissions from High Efficiency Combustion Systems" (2018 VTO AOP Lab Call)

Barriers Addressed

U.S. DRIVE Advanced Combustion & Emission Control 2018 Roadmap Barriers & Targets:

- Lack of cost-effective aftertreatment for lean-burn systems
- Compliance with U.S. EPA Tier 3 Bin 30 emission standard
- Efficiency, durability, sulfur tolerance of aftertreatment systems

Collaborators & Partners

- General Motors
- Umicore
- University of South Carolina
- Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS)

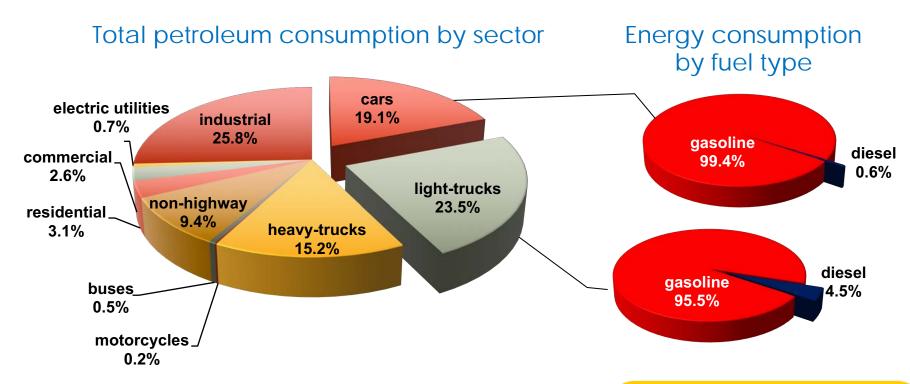
Objectives and Relevance

Enabling lean-gasoline vehicles to meet emissions regulations will achieve significant reduction in petroleum use

Objective:

- Demonstrate technical path to emission compliance that would allow the implementation of lean gasoline vehicles in the U.S. market.
 - Lean vehicles offer 5–15% increased efficiency over stoichiometric-operated gasoline vehicles
 - Compliance required: U.S. EPA Tier 3
- Investigate strategies for cost-effective compliance
 - minimize precious metal content while maximizing fuel economy

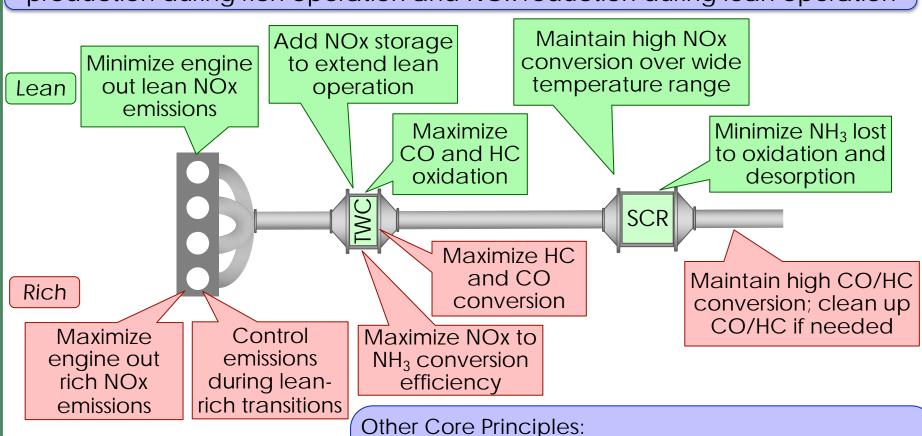
>70% less NMOG PM EPA Tier 3 Emission Regulations


54.5 mpg CAFE by 2025

Relevance:

- U.S. passenger car fleet is dominated by gasoline-fueled vehicles.
- Enabling introduction of more efficient lean gasoline engines can provide significant reductions in overall petroleum use
 - thereby lowering dependence on foreign oil and reducing greenhouse gases

Relevance: small improvements in gasoline fuel economy significantly decreases fuel consumption


- US car and light-truck fleet dominated by gasoline engines
- 10% fuel economy benefit has significant impact
 - Potential to save 13 billion gallons gasoline annually
- HOWEVER...emissions compliance needed!!!

Lean gasoline
vehicles can decrease
US gasoline
consumption by
~13 billion gal/year

Approach focuses on catalyst and system optimization of passive SCR (and LNT+SCR)

Key Principle: system fuel efficiency gain depends on optimizing NH₃ production during rich operation and NOx reduction during lean operation

Refs: SAE2010-01-0366, SAE2011-01-0306

Evaluation to the comparation of the c

- Expand operating temperature range
- Evaluate durability to hydrothermal aging and sulfur
- Understand precious metal utilization to minimize cost

Iterative flow reactor + engine study approach

BMW 120i lean gasoline engine platform with NI open controller

Automated flow reactor with feedback control and tandem catalysts

Aging rig, automated flow reactors, detailed characterization

Define exhaust conditions

Measure TWC performance vs. λ

Quantify TWC+SCR emissions & fuel efficiency

Optimize combustion parameters and evaluate full system performance

Identify formulation impacts on TWC performance

Evaluate SCR formulation effects

Investigate alternate catalyst configurations, operating strategies

Age, poison, characterize selected TWCs

Age, characterize selected SCR(s)

Prototype Catalysts & Insights

Technical Guidance

Collaborations with modeling community and CLEERS

Collaborations and Partners

Primary Project Partners

- GM: guidance and advice on lean gasoline systems via monthly teleconferences
- Umicore: guidance (via monthly teleconferences) and catalysts for studies (both commercial and prototype formulations)
- University of South Carolina (Jochen Lauterbach): Catalyst aging studies with student Calvin Thomas (now post-doc at ORNL)

Additional Collaborators/Partners on Project/Engine Platform (Since Project Inception)

- CDTi: catalysts for studies
- CLEERS: Share results/data and identify research needs
- LANL: Engine platform used for NH₃ sensor study (Mukundan, Brosha, Kreller)
- MECA: GPF studies via NTRC User-Facility contract
- University of Minnesota: Collaboration on DOE funded project at U of Minn. related to lean GDI PM (PI: Will Northrop)
- CTS (formerly FST-Filter Sensing Technologies): FOA project on RF sensors for GPF, SCR, TWC on-board diagnostics
- Tennessee Tech University: Project data being used for lean gasoline emission control system modeling
- DOE VTO Fuel Technology Program: Engine platform used for biofuel-based HC-SCR studies and TWC employed in Co-Optima research
- Hyundai: Engine platform used for Proprietary User Agreement Project
- MAHLE: New ultra lean gasoline engine research platform

R&D Expanded Coverage via Collaborations:

- Lean GDI PM Control
- Sensors
- Modeling
- Fuels

Milestones

Quarterly Milestones

Complete

 FY2019, Q3: Complete evaluation of 5-function emissions control system with cleanup catalyst

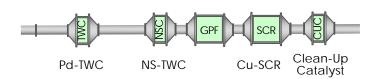
On Track

 FY2020, Q4: Complete measurement of fuel economy benefit and emissions using transient drive cycle on the newly installed MAHLE Turbulent Jet Ignition engine

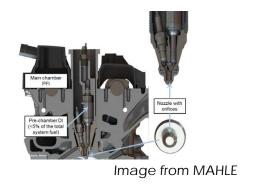
On Track

 FY2021, Q4: Tier 3 Bin 30 level emissions with an advanced engine platform with less than 4 g Pt-equivalent per liter engine displacement

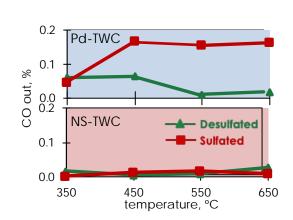
GO/NO-GO Decision


On Track

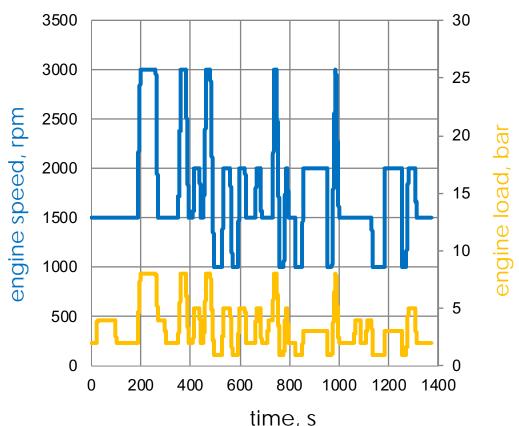
 FY2019, Q4: Install MAHLE Turbulent Jet Ignition engine at ORNL with full controls which will expand lean operation map for higher fuel efficiency and lower engine out emissions

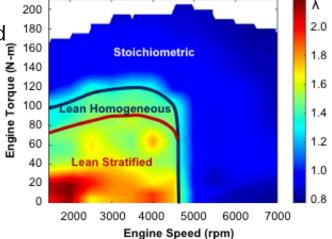


Summary of Technical Accomplishments


 Demonstrated 8.3% fuel economy improvement with 5-function catalyst system compared to 5.9% with two-catalyst system while meeting Tier 3 NOx+NMOG (0.03 g/mi)

 Procured Mahle Turbulent Jet Ignition engine for lean gasoline emissions control research

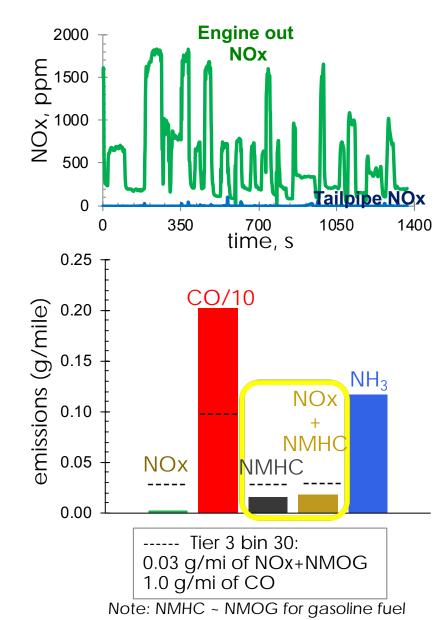

- Competed analysis of sulfur effects on isolated reactions on two TWC formulations (backup slides)
 - Production of NH₃ from H₂ unaffected but decreases from CO and C₃H₈
 - Sulfur impacts on water gas shift and steam reforming reactions varies with formulation



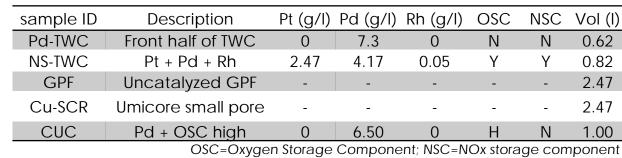
To simulate drive cycle, GM provided 6-mode pseudotransient cycle utilized for passive SCR evaluation

Operating pseudo-transient cycle closely captures fuel consumption benefit relative to stoichiometric observed on vehicle in study*

- 9.6% with pseudo-transient drive cycle
- 10% with FTP vehicle study


Speed [rpm]	Load [bar]	Default Mode
1000	1.0	LS
1500	2.0	LS
1500	4.0	LS
2000	3.0	LS
2000	5.0	LH
3000	8.0	Stoich

LS=lean stratified, LH=lean homogeneous


Prior results: U.S. Tier 3 NOx+NMOG emission levels demonstrated with 5.9% gain in fuel economy

- NOx is essentially eliminated
- CO slip is high (2x the limit)
 - clean-up catalyst and/or secondary air injection
- THC slip presented last year was low but close to NOx+NMOG limit
 - Further analysis showed that methane is ~50% of THC slip
- NH₃ slip is high, indicating improved fuel efficiency possible
 - Improved control strategy, additional catalyst technologies

Passive SCR system architecture for maximum fuel savings while meeting Tier 3 NOx + HC and CO

see backup slides for catalyst aging procedure

NH₃ generation + TWC functionality T₅ & P Lean NO_x storage & NH₃ generation + TWC functionality Heat sink, PM control SCR: Lean NO_x reduction Analytical Tools T_{12} RF RF Analytical Tools = NO_x & O₂ sensor = heated filter √// = radio frequency sensor

Catalysts aged to full useful life (FUL)

Clean-up catalyst with high OSC

Fuel contained 8 ppm of sulfur

8.3 g/liter-engine total **PGM**

Some catalyst functions can be combined into one brick

Pd-only

UFGO

functionality

National Laboratory | RESEARCH CENTER

Passive SCR system architecture for maximum fuel savings while meeting Tier 3 NOx + HC and CO

sample ID	Description	Pt (g/l)	Pd (g/l)	Rh (g/l)	OSC	NSC	Vol (I)
Pd-TWC	Front half of TWC	0	7.3	0	N	N	0.62
NS-TWC	Pt + Pd + Rh	2.47	4.17	0.05	Υ	Υ	0.82
GPF	Uncatalyzed GPF	-	-	-	-	-	2.47
Cu-SCR	Umicore small pore	-	-	-	-	-	2.47
CUC	Pd + OSC high	0	6.50	0	Н	N	1.00
			_				_

OSC=Oxygen Storage Component; NSC=NOx storage component see backup slides for catalyst aging procedure

one brick

NH₃ generation + TWC functionality T₅ & P Lean NO_x storage & NH₃ generation + TWC functionality Heat sink, PM control SCR: Lean NO_x reduction Clean-up catalyst with high OSC Analytication/ Catalysts aged to full useful life (FUL) Fuel contained 8 ppm of sulfur 8.3 g/liter-engine total Analytical Tools **PGM** = NO_X & O₂ sensor Some catalyst functions = heated filter can be combined into

**National Laboratory | NATIONAL TRANSPORTATION RESEARCH CENTER

Uncatalyzed GPF

Heat sink + important

for future regulation

✓ radio frequency sensor

UFGO

Passive SCR system architecture for maximum fuel savings while meeting Tier 3 NOx + HC and CO

√// = radio frequency sensor

UFGO

Clean-up Catalyst

High OSC containing

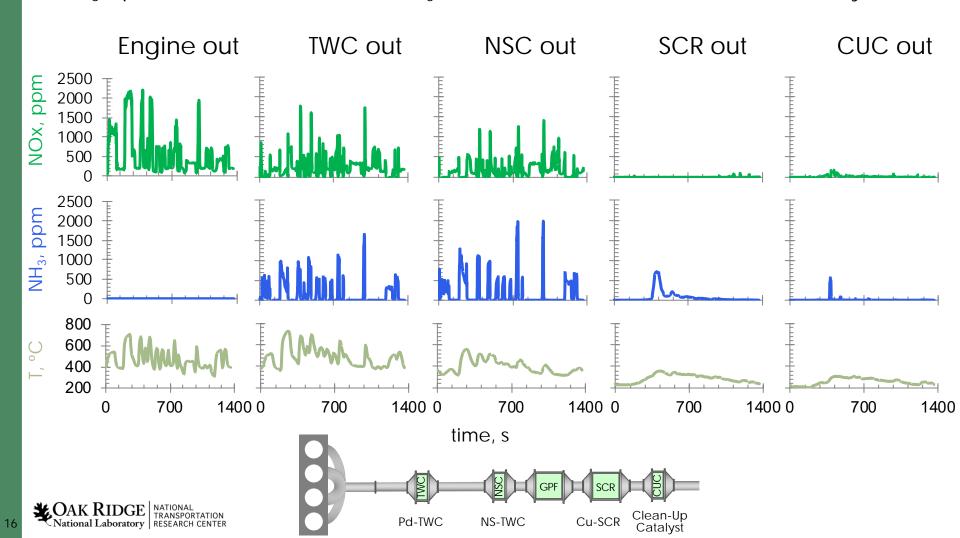
catalyst to convert CO

and HC during rich,

and help with NH₃ slip

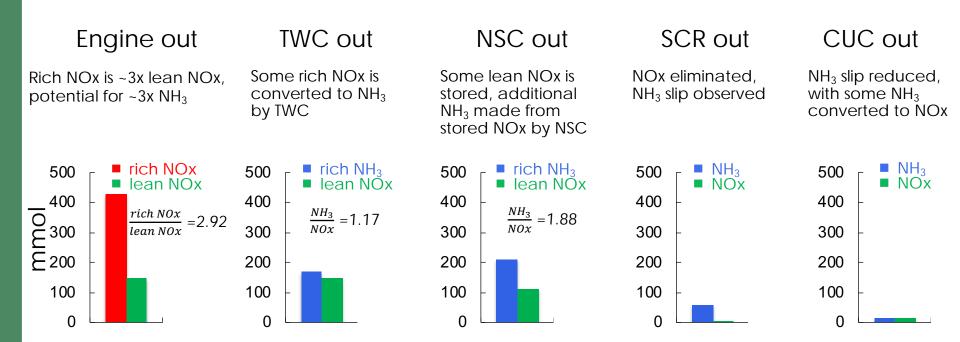
**National Laboratory | NATIONAL TRANSPORTATION RESEARCH CENTER

sample ID	Description	Pt (g/l)	Pd (g/l)	Rh (g/l)	OSC	NSC	Vol (l)
Pd-TWC	Front half of TWC	0	7.3	0	N	N	0.62
NS-TWC	Pt + Pd + Rh	2.47	4.17	0.05	Υ	Υ	0.82
GPF	Uncatalyzed GPF	-	-	-	-	-	2.47
Cu-SCR	Umicore small pore	-	-	-	-	-	2.47
CUC	Pd + OSC high	0	6.50	0	Н	N	1.00
		~ .	_		<u> </u>		

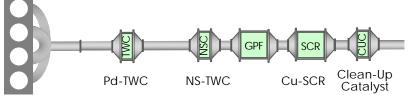

OSC=Oxygen Storage Component; NSC=NOx storage component see backup slides for catalyst aging procedure

one brick

NH₃ generation + TWC functionality T₅ & P Lean NO_x storage & NH₃ generation + TWC functionality Heat sink, PM control SCR: Lean NO_x reduction Clean-up catalyst with high OSC Analytical Tools T_{12} Catalysts aged to full useful life (FUL) RF Fuel contained 8 ppm of sulfur 8.3 g/liter-engine total Analytical Tools **PGM** = NO_X & O₂ sensor Some catalyst functions = heated filter can be combined into

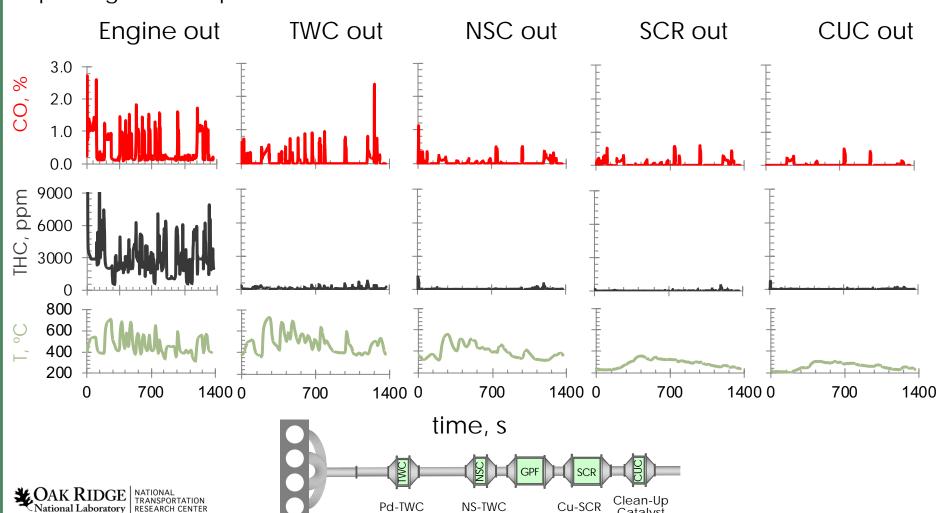

Investigate operating strategies for maximum fuel efficiency while meeting Tier 3 emission standards

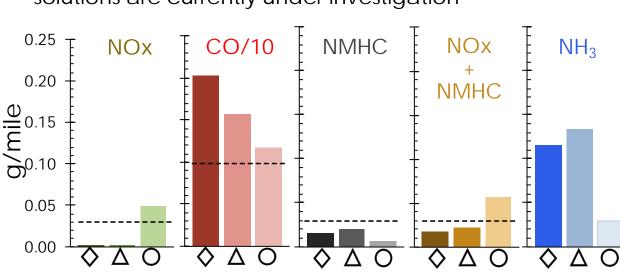
- NOx is essentially eliminated at SCR
- NH₃ slip still observed, with some NH₃ converted back to NOx over CUC catalyst

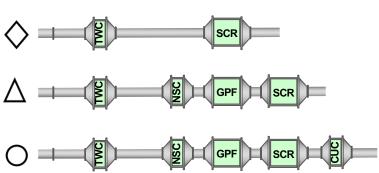


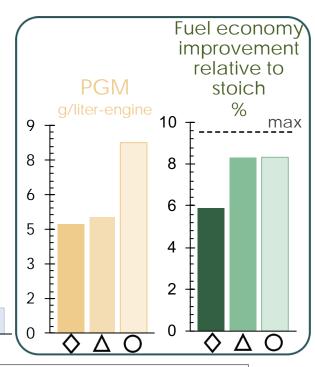
5-function emission control system enables efficient NH₃ generation and utilization for lean NOx control

NOx and NH₃ inventory




Investigate operating strategies for maximum fuel efficiency while meeting Tier 3 emission standards

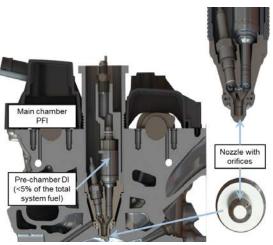

- High CO slip during rich operation
- THC slip is low during both lean and rich operation, slightly increases during prolonged lean operation



Up to 8.3% fuel efficiency improvement achieved with improved system architecture

- TWC+NSC combination enables more efficient NH₃ generation and provides pathway for increasing fuel economy benefit
- 0.03 g/mile NOx+NMOG tailpipe emissions demonstrated with FUL equivalent performance
- CUC decreases CO and HC emissions and helps with NH₃ slip, some NH₃ converted to NOx
- Further CO reduction is needed and promising solutions are currently under investigation

NATIONAL TRANSPORTATION RESEARCH CENTER


-- Tier 3 bin 30: 0.03 g/mi of NOx+NMOG,1.0 g/mi of CO

ORNL procured MAHLE TJI engine for lean gasoline emission control research

MAHLE TJI will be used to generate a wide range of exhaust conditions that will allow us to fully investigate the emission control system functionality

- BMW lean gasoline engine is 10+ years old
 - concerns about longevity and availability of replacement parts
- MAHLE TJI engine procured as a new lean gasoline engine platform
 - based on a 2.3L Ford EcoBoost engine platform
 - provides relevant turbo-boosted stoichiometric baseline for comparison
 - offers wider range of ultra lean operation
 - capable of better control over exhaust composition and temperatures

Images from MAHLE

Remaining Challenges

Future Work*

CO and HC control during rich conditions

 Maximize fuel efficiency while maintaining or further reducing emissions

- Experiments planned on flow reactor and engine platform to evaluate impact of clean-up catalysts
- Potential addition of secondary air
- Install MAHLE TJI engine to expand lean operation map for higher fuel efficiency and lower engine out emissions
- Flow reactor and engine evaluations of additional catalyst technologies and architectures
- Optimizing NH₃ generation control using real-time feedback from RFbased NH₃ storage sensor
- SCR performance at full useful life
- Engine evaluation of new SCRs provided by Umicore and aged at SGS to full useful life

Responses to 2018 reviewer comments

Summary of Reviewers' Feedback:	Project Responses:
Investigate SCR aging under passive SCR conditions	 Experiments are planed on engine and bench flow reactor to address this issue
Improve CO cleanup	 Demonstrated CO and HC reduction with a clean-up catalyst Additional clean-up catalysts formulations provided by Umicore are under investigation Addition of air injection is under consideration
Pathway for higher fuel efficiency	 Demonstrated pathway to improve from 5.9% to 8.3% Procured new lean gasoline engine platform Flow reactor and engine evaluations of additional catalyst technologies and architectures

Summary

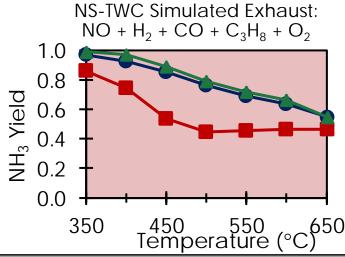
Relevance

 Lean GDI engine emission control enables potential 10-15% fuel efficiency gain for gasoline-dominant U.S. light-duty fleet

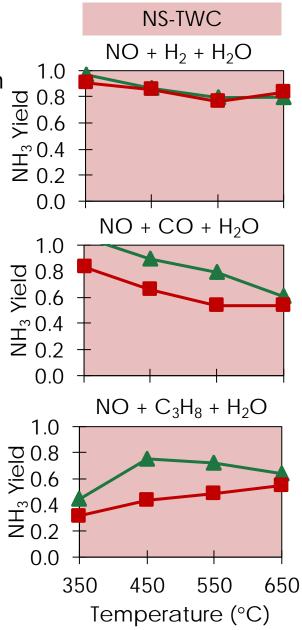
Approach

- Bench flow reactor, engine, and aging studies are combined to study fuel efficiency and emissions relative to Tier 3 standard
- Technical Accomplishments
 - Using 5-function emission control system achieved 8.3% fuel economy benefit compared to 5.9% fuel efficiency improvement demonstrated last year, while meeting Tier 3 NOx+HC (0.03 g/mi)
 - Procured Mahle TJI engine for lean gasoline emissions research
 - Completed analysis of sulfur effects on isolated reactions on two TWCs
- Collaborations
 - GM, Umicore, and the University of South Carolina are primary partners
- Future Work (subject to change based on funding levels)
 - Flow reactor and engine platform to evaluate impact of clean-up catalysts
 - Install Mahle TJI and a new transient dynamometer at ORNL
 - Evaluate additional catalyst technologies and architectures
 - Optimize NH₃ generation using real-time feedback from RF-based NH₃ sensor
 - Evaluate effects of aging on SCR catalyst under passive SCR conditions

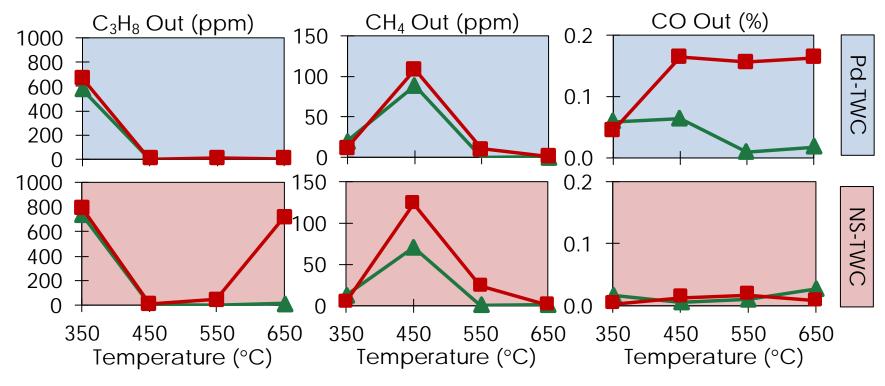
Technical back-up slides



Impact of sulfur on NH₃ selectivity

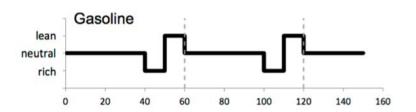

- Effects of SO₂ on hydrothermally aged Pd-TWC and NS-TWC investigated on bench flow reactor
 - Both catalysts show decrease in NH₃ production from sulfation
- Catalysts able to maintain NH₃ production from H₂ after sulfur exposure
- NH₃ production from CO and C₃H₈ decreased, indicating CO and HC pathways to NH₃ production impacted

in full simulated exhaust



Catalyst*	Pt g/L	Pd g/L	Rh g/L	OSC	NSC
Pd-TWC	0	7.3	0	Low	Low
NS-TWC	2.47	4.17	0.05	High	High

Sulfur impacts on WGS and steam reforming varies with PGM


- Relative deactivation depends on catalyst formulation:
 - Water gas shift strongly deactivated on Pd-TWC
 - Steam reforming strongly deactivated on NS-TWC

Catalyst	Pt g/L	Pd g/L	Rh g/L	OSC	NSC
Pd-TWC	0	7.3	0	Low	Low
NS-TWC	2.47	4.17	0.05	High	High

TWCs thermally aged at SGS using LTAT aging protocol, Umicore Cu SCR previously aged on engine

Aging Cycle

Stoich: 40 seconds, lambda=1

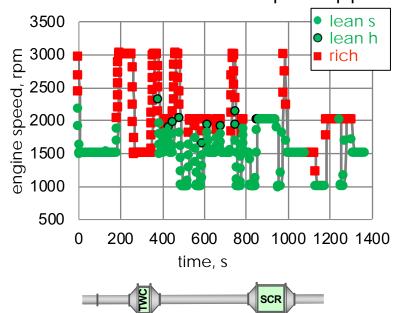
Rich: 10 seconds, lambda=0.91

Lean: 10 seconds, lambda=1.33

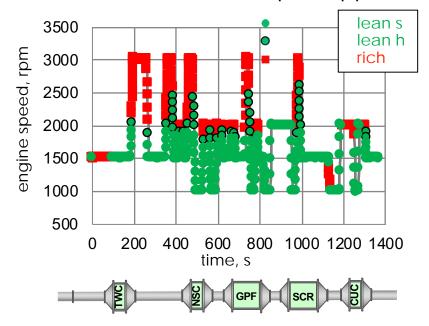
Aging inlet temperature

- 800C for closed coupled
 - Malibu and ORNL-1
- 700C for underfloor
 - ORNL-3 and ORNL-5
- Aging time
 - 50 hours
- Catalyst space velocity
 - 30K hr⁻¹

https://cleers.org/wp-content/uploads/2015_LTAT-Oxidation-Catalyst-Characterization-Protocol.pdf

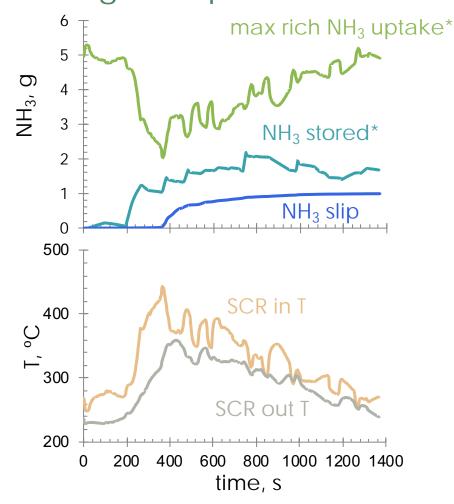


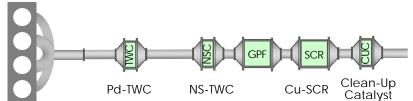
Investigate exhaust architectures and operating strategies for better fuel efficiency


TWC + SCR

- Partially preload SCR with NH₃ to have enough for first 200s
- Exclude lean homogeneous
- Operate at λ=0.97 under most condition, when SCR temperature too high, operate λ=0.99
- Switch to rich if NOx slip >10 ppm

TWC+NSC+GPF+SCR+CUC


- Operate rich λ=0.99 first 100s (cold start)
- Include some lean homogeneous
- Operate at λ=0.98 under most condition, when SCR temperature too high, operate λ=0.99
- Switch to rich if NOx slip >20 ppm



While acceleration transients offer natural opportunities for fuel efficient NH₃ generation, NOx reduction can be limited due to low NH₃ storage at high temperatures

- Acceleration events
 - increase NH₃ generation potential
 b/c of high engine-out NOx
 - create opportunity for fuel efficient
 NH₃ generation b/c engine runs
 stoich or slightly rich already
- But long accelerations increase SCR temperature limiting NH₃ storage
- Effective NH₃ utilization needed to minimize NH₃ slip and improve fuel efficiency
 - increased high temperature SCR storage capacity
 - Improved control strategy

*NH₃ stored = NH₃ in- NOx in

*calculated based on rich NH₃ uptake experiments